Comparison of outflow boundary conditions for subsonic aeroacoustic simulations
نویسندگان
چکیده
OATAO is an open access repository that collects the work of Toulouse researchers and makes it freely available over the web where possible. SUMMARY Aeroacoustics simulations require much more precise boundary conditions than classical aerodynamics. Two classes of non-reflecting boundary conditions for aeroacoustics are compared in the present work: characteristic analysis based methods and Tam and Dong approach. In characteristic methods, waves are identified and manipulated at the boundaries while Tam and Dong use modified linearized Euler equations in a buffer zone near outlets to mimic a non-reflecting boundary. The principles of both approaches are recalled and recent characteristic methods incorporating the treatment of transverse terms are discussed. Three characteristic techniques (the original NSCBC formulation of Poinsot and Lele and two versions of the modified method of Yoo and Im) are compared to the Tam and Dong method for four typical aeroacoustics problems: vortex convection on a uniform flow, vortex convection on a shear flow, acoustic propagation from a monopole and from a dipole. Results demonstrate that the Tam and Dong method generally provides the best results and is a serious alternative solution to characteristic methods even though its implementation might require more care than usual NSCBC approaches.
منابع مشابه
Subsonic characteristic outflow boundary conditions with transverse terms: a comparative study
متن کامل
Non-reflection Boundary Conditions for Numerical Simulation of Supersonic Flow
This article presents the boundary conditions for the problem of turbulent supersonic gas flow in a plane channel with a perpendicular injection jets. The non-reflection boundary conditions for direct modeling of compressible viscous gases are studied. A formulation using the NSCBC (NavierStocks characteristic boundary conditions) through boundaries is derived for the subsonic inflow and subson...
متن کاملGeneralized characteristic relaxation boundary conditions for unsteady compressible flow simulations
We develop numerical boundary conditions for the compressible Navier–Stokes equations based on a generalized relaxation approach (GRCBC), which hinges on locally one-dimensional characteristic projection at the computational boundaries, supplemented with available information from the flow exterior. The basic idea is to estimate the amplitude of incoming characteristic waves through first-order...
متن کاملVariance reduction through robust design of boundary conditions for stochastic hyperbolic systems of equations
We consider a hyperbolic system with uncertainty in the boundary and initial data. Our aim is to show that different boundary conditions gives different convergence rates of the variance of the solution. This means that we can with the same knowledge of data get a more or less accurate description of the uncertainty in the solution. A variety of boundary conditions are compared and both analyti...
متن کاملComputational aeroacoustics: progress on nonlinear problems of sound generation
Computational approaches are being developed to study a range of problems in aeroacoustics. These aeroacoustic problems may be classified based on the physical processes responsible for the sound radiation, and range from linear problems of radiation, refraction, and scattering in known base flows or by solid bodies, to sound generation by turbulence. In this article, we focus mainly on the cha...
متن کامل